Examining the Validity of the Phonon Gas Model in Amorphous Materials
نویسندگان
چکیده
The idea of treating phonon transport as equivalent to transport through a gas of particles is termed the phonon gas model (PGM), and it has been used almost ubiquitously to try and understand heat conduction in all solids. However, most of the modes in disordered materials do not propagate and thus may contribute to heat conduction in a fundamentally different way than is described by the PGM. From a practical perspective, the problem with trying to apply the PGM to amorphous materials is the fact that one cannot rigorously define the phonon velocities for non-propagating modes, since there is no periodicity. Here, we tested the validity of the PGM for amorphous materials by assuming the PGM is applicable, and then, using a combination of lattice dynamics, molecular dynamics (MD) and experimental thermal conductivity data, we back-calculated the phonon velocities for the vibrational modes. The results of this approach show that if the PGM was valid, a large number of the mid and high frequency modes would have to have either imaginary or extremely high velocities to reproduce the experimental thermal conductivity data. Furthermore, the results of MD based relaxation time calculations suggest that in amorphous materials there is little, if any, connection between relaxation times and thermal conductivity. This then strongly suggests that the PGM is inapplicable to amorphous solids.
منابع مشابه
Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide
Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself...
متن کاملThermal transport in amorphous materials: a review
Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure f...
متن کاملTemperature Effect on THz Quantum Cascade Lasers
A simple semi-phenomenological model, which accurately predicts the dependence of thresholdcurrent for temperature of Resonant-phonon three well quantum cascade laser based on verticaltransitions is offered. We found that, the longitude optical phonon scattering of thermally excitedelectrons is the most important limiting factor for thermal performance of high frequency THz QCLs.In low frequenc...
متن کاملRayleigh Surface Wave Propagation in Transversely Isotropic Medium with Three-Phase-Lag Model
The present paper is dealing with the propagation of Rayleigh surface waves in a homogeneous transversely isotropic medium .This thermo-dynamical analysis is carried out in the context of three-phase-lags thermoelasticity model. Three phase lag model is very much useful in the problems of nuclear boiling, exothermic catalytic reactions, phonon-electron interactions, phonon scattering etc. The n...
متن کاملTheory of Nonlinear s-Polarized Phonon-Polaritons in Multilayered Structures
A theory is presented for the dispersion relations of the nonlinear phonon-polaritons arising when phonons are coupled to the electromagnetic waves in multilayered structures of nonlinear materials. The calculations are applied to a multilayered structure consisting of a thin film surrounded by semi-infinite bounding media where each layer may have a frequency dependent dielectric function and ...
متن کامل